Isotopes of neodymium
| ||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Nd) | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Naturally occurring neodymium (60Nd) is composed of five stable isotopes, 142Nd, 143Nd, 145Nd, 146Nd and 148Nd, with 142Nd being the most abundant (27.2% natural abundance), and two long-lived radioisotopes, 144Nd and 150Nd. In all, 35 radioisotopes of neodymium have been characterized up to now, with the most stable being naturally occurring isotopes 144Nd (alpha decay, a half-life (t1/2) of 2.29×1015 years) and 150Nd (double beta decay, t1/2 of 9.3×1018 years), and for practical purposes they can be considered to be stable as well. All of the remaining radioactive isotopes have half-lives that are less than 12 days, and the majority of these have half-lives that are less than 70 seconds; the most stable artificial isotope is 147Nd with a half-life of 10.98 days. This element also has 15 known meta states with the most stable being 139mNd (t1/2 5.5 hours), 135mNd (t1/2 5.5 minutes) and 133m1Nd (t1/2 ~70 seconds).
The primary decay modes for isotopes lighter than the most abundant stable isotope (also the only theoretically stable isotope), 142Nd, are electron capture and positron decay, and the primary mode for heavier radioisotopes is beta decay. The primary decay products for lighter radioisotopes are praseodymium isotopes and the primary products for heavier ones are promethium isotopes.
Neodymium isotopes as fission products
[edit]Neodymium is one of the more common fission products that results from the splitting of uranium-233, uranium-235, plutonium-239 and plutonium-241. The distribution of resulting neodymium isotopes is distinctly different than those found in crustal rock formation on Earth. One of the methods used to verify that the Oklo Fossil Reactors in Gabon had produced a natural nuclear fission reactor some two billion years before present was to compare the relative abundances of neodymium isotopes found at the reactor site with those found elsewhere on Earth.[4][5][6]
List of isotopes
[edit]
Nuclide [n 1] |
Z | N | Isotopic mass (Da) [n 2][n 3] |
Half-life [n 4][n 5] |
Decay mode [n 6] |
Daughter isotope [n 7] |
Spin and parity [n 8][n 5] |
Natural abundance (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy[n 5] | Normal proportion | Range of variation | |||||||||||||||||
124Nd | 60 | 64 | 123.95223(64)# | 500# ms | 0+ | ||||||||||||||
125Nd | 60 | 65 | 124.94888(43)# | 600(150) ms | 5/2(+#) | ||||||||||||||
126Nd | 60 | 66 | 125.94322(43)# | 1# s [>200 ns] | β+ | 126Pr | 0+ | ||||||||||||
127Nd | 60 | 67 | 126.94050(43)# | 1.8(4) s | β+ | 127Pr | 5/2+# | ||||||||||||
β+, p (rare) | 126Ce | ||||||||||||||||||
128Nd | 60 | 68 | 127.93539(21)# | 5# s | β+ | 128Pr | 0+ | ||||||||||||
β+, p (rare) | 127Ce | ||||||||||||||||||
129Nd | 60 | 69 | 128.93319(22)# | 4.9(2) s | β+ | 129Pr | 5/2+# | ||||||||||||
β+, p (rare) | 128Ce | ||||||||||||||||||
130Nd | 60 | 70 | 129.92851(3) | 21(3) s | β+ | 130Pr | 0+ | ||||||||||||
131Nd | 60 | 71 | 130.92725(3) | 33(3) s | β+ | 131Pr | (5/2)(+#) | ||||||||||||
β+, p (rare) | 130Ce | ||||||||||||||||||
132Nd | 60 | 72 | 131.923321(26) | 1.56(10) min | β+ | 132Pr | 0+ | ||||||||||||
133Nd | 60 | 73 | 132.92235(5) | 70(10) s | β+ | 133Pr | (7/2+) | ||||||||||||
133m1Nd | 127.97(11) keV | ~70 s | β+ | 133Pr | (1/2)+ | ||||||||||||||
133m2Nd | 176.10(10) keV | ~300 ns | (9/2–) | ||||||||||||||||
134Nd | 60 | 74 | 133.918790(13) | 8.5(15) min | β+ | 134Pr | 0+ | ||||||||||||
134mNd | 2293.1(4) keV | 410(30) μs | (8)– | ||||||||||||||||
135Nd | 60 | 75 | 134.918181(21) | 12.4(6) min | β+ | 135Pr | 9/2(–) | ||||||||||||
135mNd | 65.0(2) keV | 5.5(5) min | β+ | 135Pr | (1/2+) | ||||||||||||||
136Nd | 60 | 76 | 135.914976(13) | 50.65(33) min | β+ | 136Pr | 0+ | ||||||||||||
137Nd | 60 | 77 | 136.914567(12) | 38.5(15) min | β+ | 137Pr | 1/2+ | ||||||||||||
137mNd | 519.43(17) keV | 1.60(15) s | IT | 137Nd | (11/2–) | ||||||||||||||
138Nd | 60 | 78 | 137.911950(13) | 5.04(9) h | β+ | 138Pr | 0+ | ||||||||||||
138mNd | 3174.9(4) keV | 410(50) ns | (10+) | ||||||||||||||||
139Nd | 60 | 79 | 138.911978(28) | 29.7(5) min | β+ | 139Pr | 3/2+ | ||||||||||||
139m1Nd | 231.15(5) keV | 5.50(20) h | β+ (88.2%) | 139Pr | 11/2– | ||||||||||||||
IT (11.8%) | 139Nd | ||||||||||||||||||
139m2Nd | 2570.9+X keV | ≥141 ns | |||||||||||||||||
140Nd | 60 | 80 | 139.90955(3) | 3.37(2) d | EC | 140Pr | 0+ | ||||||||||||
140mNd | 2221.4(1) keV | 600(50) μs | 7– | ||||||||||||||||
141Nd | 60 | 81 | 140.909610(4) | 2.49(3) h | β+ | 141Pr | 3/2+ | ||||||||||||
141mNd | 756.51(5) keV | 62.0(8) s | IT (99.95%) | 141Nd | 11/2– | ||||||||||||||
β+ (.05%) | 141Pr | ||||||||||||||||||
142Nd | 60 | 82 | 141.9077233(25) | Stable | 0+ | 0.272(5) | 0.2680–0.2730 | ||||||||||||
143Nd[n 9] | 60 | 83 | 142.9098143(25) | Observationally Stable[n 10] | 7/2− | 0.122(2) | 0.1212–0.1232 | ||||||||||||
144Nd[n 9][n 11] | 60 | 84 | 143.9100873(25) | 2.29(16)×1015 y | α | 140Ce | 0+ | 0.238(3) | 0.2379–0.2397 | ||||||||||
145Nd[n 9] | 60 | 85 | 144.9125736(25) | Observationally Stable[n 12] | 7/2− | 0.083(1) | 0.0823–0.0835 | ||||||||||||
146Nd[n 9] | 60 | 86 | 145.9131169(25) | Observationally Stable[n 13] | 0+ | 0.172(3) | 0.1706–0.1735 | ||||||||||||
147Nd[n 9] | 60 | 87 | 146.9161004(25) | 10.98(1) d | β− | 147Pm | 5/2− | ||||||||||||
148Nd[n 9] | 60 | 88 | 147.916893(3) | Observationally Stable[n 14] | 0+ | 0.057(1) | 0.0566–0.0578 | ||||||||||||
149Nd[n 9] | 60 | 89 | 148.920149(3) | 1.728(1) h | β− | 149Pm | 5/2− | ||||||||||||
150Nd[n 9][n 11][n 15] | 60 | 90 | 149.920891(3) | 9.3(7)×1018 y[1] | β−β− | 150Sm | 0+ | 0.056(2) | 0.0553–0.0569 | ||||||||||
151Nd | 60 | 91 | 150.923829(3) | 12.44(7) min | β− | 151Pm | 3/2+ | ||||||||||||
152Nd | 60 | 92 | 151.924682(26) | 11.4(2) min | β− | 152Pm | 0+ | ||||||||||||
153Nd | 60 | 93 | 152.927698(29) | 31.6(10) s | β− | 153Pm | (3/2)− | ||||||||||||
154Nd | 60 | 94 | 153.92948(12) | 25.9(2) s | β− | 154Pm | 0+ | ||||||||||||
154m1Nd | 480(150)# keV | 1.3(5) μs | |||||||||||||||||
154m2Nd | 1349(10) keV | >1 μs | (5−) | ||||||||||||||||
155Nd | 60 | 95 | 154.93293(16)# | 8.9(2) s | β− | 155Pm | 3/2−# | ||||||||||||
156Nd | 60 | 96 | 155.93502(22) | 5.49(7) s | β− | 156Pm | 0+ | ||||||||||||
156mNd | 1432(5) keV | 135 ns | 5− | ||||||||||||||||
157Nd | 60 | 97 | 156.93903(21)# | 1.17(4) s[9] | β− | 157Pm | 5/2−# | ||||||||||||
158Nd | 60 | 98 | 157.94160(43)# | 810(30) ms | β− | 158Pm | 0+ | ||||||||||||
158mNd | 1648.1(14) keV | 339(20) ns | IT | 160Nd | (6−) | ||||||||||||||
159Nd | 60 | 99 | 158.94609(54)# | 500(30) ms | β− | 159Pm | 7/2+# | ||||||||||||
160Nd | 60 | 100 | 159.94909(64)# | 439(37) ms | β− | 160Pm | 0+ | ||||||||||||
160mNd | 1107.9(9) keV | 1.63(21) μs | IT | 160Nd | (4−) | ||||||||||||||
161Nd | 60 | 101 | 160.95388(75)# | 215(76) ms | β− | 161Pm | 1/2−# | ||||||||||||
162Nd | 60 | 102 | 310(200) ms | β− | 162Pm | 0+ | |||||||||||||
163Nd | 60 | 103 | 80# ms | β− | 163Pm | 5/2−# | |||||||||||||
This table header & footer: |
- ^ mNd – Excited nuclear isomer.
- ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- ^ Bold half-life – nearly stable, half-life longer than age of universe.
- ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
- ^
Modes of decay:
EC: Electron capture IT: Isomeric transition
p: Proton emission - ^ Bold symbol as daughter – Daughter product is stable.
- ^ ( ) spin value – Indicates spin with weak assignment arguments.
- ^ a b c d e f g h Fission product
- ^ Believed to undergo α decay to 139Ce with a half-life over 2.8×1019 years[1][7][8]
- ^ a b Primordial radionuclide
- ^ Believed to undergo α decay to 141Ce with a half-life of over 6.1×1019 years[1][7][8]
- ^ Believed to undergo β−β− decay to 146Sm or α decay to 142Ce with a half-life of over 3.3×1021 years[1][7][8]
- ^ Believed to undergo β−β− decay to 148Sm or α decay to 144Ce with a half-life of over 1.2×1019 years[1][7][8]
- ^ Predicted to be capable of undergoing triple beta decay and quadruple beta decay with very long partial half-lives
References
[edit]- ^ a b c d e f g Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- ^ "Standard Atomic Weights: Neodymium". CIAAW. 2005.
- ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- ^ Hemond, C.; Menet, C.; Menager, M.T. (1991). "U and Nd Isotopes from the New Oklo Reactor 10 (GABON): Evidence for Radioelements Migration". MRS Proceedings. 257. doi:10.1557/PROC-257-489.
- ^ "Oklo's Natural Nuclear Reactors". 24 October 2020.
- ^ "The Implications of the Oklo Phenomenon on the Constancy of Radiometric Decay Rates".
- ^ a b c d Sokur, N.V.; Belli, P.; Bernabei, R.; Boiko, R.S.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Incicchitti, A.; Kasperovych, D.V.; Kobychev, V.V.; Laubenstein, M.; Leoncini, A.; Merlo, V.; Polischuk, O.G.; Tretyak, V.I. (11 July 2023). Alpha decay of naturally occurring neodymium isotopes. XII International Conference on New Frontiers in Physics.
- ^ a b c d Belli, P.; Bernabei, R.; Danevich, F. A.; Incicchitti, A.; Tretyak, V. I. (2019). "Experimental searches for rare alpha and beta decays". European Physical Journal A. 55 (140): 4–6. arXiv:1908.11458. Bibcode:2019EPJA...55..140B. doi:10.1140/epja/i2019-12823-2. S2CID 201664098.
- ^ Hartley, D. J.; Kondev, F. G.; Carpenter, M. P.; Clark, J. A.; Copp, P.; Kay, B.; Lauritsen, T.; Savard, G.; Seweryniak, D.; Wilson, G. L.; Wu, J. (2023-08-14). "First β−-decay spectroscopy study of 157Nd". Physical Review C. 108 (2). American Physical Society (APS): 024307. Bibcode:2023PhRvC.108b4307H. doi:10.1103/physrevc.108.024307. ISSN 2469-9985. S2CID 260913513.
- Isotope masses from:
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- Isotopic compositions and standard atomic masses from:
- de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
- "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
- Half-life, spin, and isomer data selected from the following sources.
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory.
- Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.